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ABSTRACT
An interim report from the National Science
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discussed: How can math content be taught in a manner which also
develops problem solving skills? Also, how does a curriculum
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TEACHING PROBLEM SOLVING AND MATHEMATICS

BY COMPUTER: AN INTERIM REPORT

Richard Allan Roman

Learning Research and Development Center

University of Pittsburgh

I. Introduction

The MATH FUNCTIONS curriculum package was designed to teach

both mathematical content and problem solving skills. The package is ont

component of an individualized mathematics system operating in an ele-

mentary school. All instruction in the curriculum is accomplished through
a computer program implemented on the school's computer resource.
Other components of the mathematics system teach the same content
material, giving students a choice of instructional media. The problem
solving curriculum package teaches more than one hundred behavioral
objectives, or one-fourth of the elementary school mathematics for grades

three through six.

Successfully solving problems should develop inquiry skills. The

curriculum package provides a structured environment which encourages
problem solving activities such as stating the problem clearly, gathering
and organizing data, using feedback, formulating and testing hypotheses,
knowing you have finished, dividing problems into subproblems, and com-
bining subsolutions into complete solutions. Students who experience suc-

cess at solving problems in this structured environment increase their

sense of competence and their desire to solve more problems.

This report focuses on two questions. First, how can mathematics

content be taught in a manner which also develops problem solving skills?

Second. does a curriculum organized to develop problem solving skills
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teach the mathematical content? A suosequent report ill describe how
well problem solving skills are taught in the context of mathematical content.

From our research to date, some conclusions can be made. Both
mathematical content and problem solving skills can be tauvht by st,-.icturing
the mathematical content as a sequence of problems in which the student
induces the organizational rule from examples. Appropriate structuring
of the environment in which rules are induced teaches problem solving

Mathematicat content watch requT.res simple rules, simple stimu-
lus materiel. and for which the student has mastered the prerequisite
skills Lught effectively in conjunction with problem solving skills.
Many students learn mathematical content in an environment which also
teaches problem solving skille.

II. Procedure

A. Overview of procedure

The procedure section contains three darts corresponding to the
three ma ill' tasks in preparing the curriculum package and introducing it
to the school. The first part describes how the computer program (FUNC-
TIONS) structures the student's environment to teach problem solving.
The second part describes how mathematical content material is prepared
for presentation via the computer program. The third part describes how
the program to teach mathematical content (MATII FUNCTTONS) was used
in a public school. The following paragraphs give an overview of the
three parts. The rest of this section is divided into three additional sub-
sections that deal intensively with each of the three parts.

The FUN..:TIONS computer program establishes an environment
within wnich students solve problems. Each problem is presented 'n the
same form, and that common form creates the problem solving environ-
ment. Each problem presented requires the stuciert ,o infer a rule which

2



BEST COPY AVAILABLE

transforms one number into another number so that in each problem the

student infers a new rule.

The student's task is to infer the rule from examples. To aid
this process, the student can type in numbers for the computer to trans-
form or he can test his understanding by transforming numbers the com-
puter chooses and receiving feedback about his answers. When the stu-
dent completes work on one rule, he can change to a new problem. The
next subsection describes how the structure of the program encourages
good problem solving.

The concept of a function is fundamental to mathematics. Through-
out mathematics, rules which relate one symbol to another are basic con-

tent. Much mathematics work focuses on invention, recognition, gen-

eralization, and description of functional relations between sets of num-
.

hers. One-fourth of the objectives of elementary school mathematics
requires the student to learn or extend a functional rule.

Since the problem solving program requires all problems to be
functional relationships, one-:ourth of elementary school content was
available for teaching. Each objective to be taught required a sequence
of problems carefully designed to help students induce appropriate rules.
Preparation of an objective for presentation via the computer program
involved specifying the sequence of problems through detailed task analysis.

The second subsection describes the method of analysis and gives an
extended example.

The MATH FUNCTIONS program was introduced into an elementary

school for purposes of formative evaluation in Spring 1972. The program

was fully integrated with standard operating procedures at the school,
and was used freely by the students. In Fall 1972 more objectives were
added, and formative evaluation continued on a full school basis. The

third subsection describes how the program was introduced to the school
and the formative evaluation procedures used to modify the program.

3
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B. The FUNCTIONS Program

The FUNCTIONS program was dt signed to create an environment
in which students develop problem solving skills. Features of the environ.
ment encourage students to state the problem clearly, gather data, organize
data, use feedback, formulate and test hypotheses, decide when they have
finished, divide complicated problems into subproblems, and integrate
subsolutions into full solutions. This subsection examines the interactions
with the student, the kinds of problems presented by FUNCTIONS, and the
features of the program which teach specific problem solving skills.

1. The Interactions with the Student

Every time a student ivies FUNCTIONS, he solves a problem of
the same kind. Each prob'em requires him to infer a rule by which cer-
tain numbers or letters (the domain elements) are transformed into other
numbers or letters (the range elements). The student must induce the
rule from particular examples of correct domain-range pairs which are
displayed for him. For example, if the rule is 'add six to the domain
element. the student would initially see a sample display like that in
Figure 1. Notice that the donia.in elements (6 and 34) are displayed on the
left of the word "BECOMES" and the corresponding range elements (12
and 40) are displayed on the right. This form is maintained for all pro-
blems displayed by the FUNCTIONS program.

6 BECOMES 12
34 BECOMES 40

Figure 1. The sample display

4
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The Input Mode. UstiaN the first samples of the problem are

insufficient lot the student to induce the rule. The student can generate

more data by using; the input mode of the program. During input mode.

the student types any domain element he wishes. and the program trans-
forms the domain element into a range element and displays the resulting
pair for the student. The input mode display appears in Figure Z. Notice

that the dcm.iin is specified for the student as ''A NUMERAL. BETWEEN 1

and q9." The three stars tell the student that he is to type some-

thng. In Figure 2 the student typed "7." The display after a correct
input appears in Figure i.

r
6 BECOMES 12
34 BECOMES 40

TYPE A NUMERAL BETWEEN 1 AND 99

OR "TEST" OR "CHANGE."

Figure2. The input mode display

6 BECOMES 12
34 BECOMES 40
7 BECOMES 13

TYPE A NUMERAL BETWEEN 1 AND 99

OR "TEST" OR "CHANGE."

Figure 3. A correct input display

5
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Input mock remains in etle.t after inputs. so the student may
type many inputs in a row. In Figure 5 the student tries to input "100,"
a number too large for the domain, so the program produces an error
message instead of a range element. The incorrect input display appears
in Figure .

6 BECOMES 12
34 BECOMES 40
7 BECOMES 13

100 IS TOO LONG

TYPE A NUMERAL BETWEEN 1 AND 09

OR "TEST" OR "CHANGE."
TEST

Figure 4. An incorrect input display

The student can continue typing inputs as long as he wishes and

he will continue to get corrective feedback or new domain-range pass.

When the student is ready, he can enter !te test mode by typing the word

"TEST.- as shown in Figure 4.

The rest Mode. In the .est mock of FI.NCTiONS. the program

supplies domain elements for the st,:deat to process according to his

uncierstanding of the rule. A display in test mode appears in iguie
A lorrct answer. like that given in Figure is followed by the sound

of a bell and the display in Figure
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8 BECOMES 12
34 BECOMES 40
7 BEGOMES 13

TYPE "CHANGE" OR THE ANSWER TO
21 BECOMES
*** 27

Figure 5. The test mode display

100,1
6 BECOMES 12
34 BECOMES 40
7 BECOMES 13
BECOMES 27

GREAT,

INOM104,4,

TYPE "CHANGE" OR THE ANSWER TO
97 BECOMES

*913

Figure 6. A correct test display

Students remain in the teat mode as long as teats are answered

correctly. The new test (97) in Figure 6 was created since the last

answer given was correct. The student erroneously responds to 97 with

913. This error leads to the incorrect test display in Figu.e 7; the form

of the display with the error directly under the correct answer facilitates

comparison. Notice that an error in the test mode transfers control to

the input mode. a feature designed to encourage the. student to explore

7
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MID

inputs related to the domain element which caused his error; in this case,
numbers near 97 would be relevant inputs.

6 BECOMES 12
34 BECOMES 40
7 BECOMES 13

21 BECOMES 27
97 BECOMES 103

NOT 913

TYPE A NUMERAL BETWEEN 1 AND (A
OR "TEST" OR "CHANGE."

CHANGE

Figure 7. An incorrect test display

The Change Option. The option to change problems is available
in both test and input modes. When the student types "CHANGE." the

FUNCTIONS program prepares another problem, presents the sample
display and initiates the input mode. The student can type "CHANGE"

whenever he wishes. However, if he has not taken enough tests to
demonstrate his knowledge (or lack of knowledge) of the rules, he will
not be allowed to see a new problem. He does not need to master the
rule. but he must try at least one test. Suppose the student has taken
no tests. and types "CHANGE." The computer displays the message,
"YOU MUST TAKE MORE TESTS BEFORE TYPING 'CHANGE," shown
in Figure 8.

8
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6 BECOMES 12
34 BECOMES 40

7 BECOMES 13
21 BECOMES 27
97 BECOMES 103

YOU MUST TAKE MORE TESTS BEFORE TYPING "CHANGE."
TYPE "CHANGE" OR THE ANSWER TO
56 BECOMES

Figure 8. An incorrect change display

Special Messages. Two additional messages provide guidance to

the student. After six or more inputs in a row, he is encouraged, but not

required, to enter the test mode. This feature urges the student to

develop a hypothesis to test within six inputs, and to proceed to test his
hypothesis. Assuming 99 was the sixth successive input, the too-many-
input display would appear as shown in Figure 9.

9



BEST COPY AVAILABLE

6 BECOMES 12
34 BECOMES 40
7 BECOMES 13
21 BECOMES 27
97 BECOMES 103
54 3ECOMES 60
94 BECOMES 100
95 BECOMES 101
99 BECOMES 105

PLEASE TYPE "TEST" SOON.

TYPE A NUMERAL BETWEEN 1 AND 99

OR "TEST" OR "CHANGE"

Figure 9. The toomany input display

Similarly, after six correct tests in a row, the student has, in
most cases, demonstrated sufficient mastery of the rule and is encouraged
to change to a new problem. Assuming now that 99 is the sixth correct
test in a row, the too-many-tests display would appear as in Figure 10.

6 BECOMES 12
34 BECOMES 40
7 BECOMES 13
21 BECOMES 27
97 BECOMES 103
54 BECOMES 60
94 BECOMES 100
95 BECOMES 101
99 BECOMES 105
GREAT!

PLEASE TYPE "CHANGE" SOON.

TYPE "CHANGE" OR THE ANSWER TO
29 BECOMES

Figure 10. The too-many-tests display

111
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Summary of Interaction with the Student. The last pages presented

an example of a student interacting with the FUNCTIONS program to solve

a problem. In this example, the student's problem was to find a rule

which explains how numbers between I and 99, the domain elements, are

transformed to produce the corresponding range elements. The input

mode and the test mode are designed to help him. The student can type

as many inputs as he wishes in input mode. Each input is examined for

legality. Illegal inputs are rejected, with an explanation for the rejection.

Legal domain elements are transformed and displayed with their corre-

sponding range elements. The display is organized for easy reference.

In test mode, which the students enters by typing "TEST," the computer

provides domain elements which the student transforms. Student answers

are evaluated and feedback is provided. On incorrect answers, both the

correct answer and the student's answer are displayed. On correct

answers, the student is reinforced by a bell sound and the word "GREAT!"

Students may decide how many tests to take. There is no limit to the

number of times the student can use both test and input modes; and the

student can terminate his own work on the problem by typing "CHANGE."

Special messages are displayed if the student tries to change problems

without self-testing, if he makes too many inputs, and if he takes too

many tests in a row.

2. The Kind of Problem Presented

An enormous variety of problems can be presented with the

FUNCTIONS program. This subsection describes the three properties

common to all problems used with FUNCTIONS and gives some repre-

sentative examples. The three common properties are: (a) the rule

must be a mathematical function; (b) the range and domain must be com-

posed of alphabetic or numeric characters; and (c) the rule, the domain,

and the range must be simple.
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The Three Properties Common to All FUNCTIONS Probli IT*. All

problems that the FUNCTIONS program presents are mathematical func-
tions, a fact recognized in the name of the program. Mathematically, a

function is described by the domain set, L e range set and the rule by
which domain elements are transformed into range elements. Rules ,n
functions are restricted, by definition, to those which transform each
element of the domain into a single element of the range. Some examples
will clarify the definition of function. The rule, "Add one to the domain
element," is a legitimate functional rule since each domain number is
transformed into one range number. The rule, "If the domain number is
even, say 'EVEN': if it is odd, say 'ODD,' " is also a legitimate functional
rule, since each domain number is transformed to exactly one range ele-
ment. By contrast, the rule, "Take the square root of the domain ele-
ment." is not a functional rule, since each positive domain element has
two corresponding range elements.

Within the context of the FUNCTIONS program, the mathematical
definition of function assumes an important role. Each display line con-
tains one pair of domain-range elements connected by the functional rule.
The student knows that pairs are fired for all time. If he repeats a
domain element in input mode, he will see an identical pair. This

restriction simplifies the search for a rule.

All pairs of domain and range elements the FUNCTIONS program

presents are composed of alphabetic, numeric, and certain special
characters contained on a standard typewriter. The length of the domain
element plus the length of tFe range element must be less than 72 charac-
ters. A single line of display contains a maximum of 72 characters, and
instructional considerations dictate having exactly one display line per
pair. If more than one line per pair were allowed, the density of infor-
mation in the display would be reduced and the student would be required
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to type to much to get a sirsle display. Both of these could lead to a

deterioration of performance.

Thee domain, range, and rule must be simple for all problems
the FUNCTIONS program presents. Simple sets have easily recognized
elements and can be described in a few words; complex sets fail one or
both of these criteria. The concept is best illustrated by examples. Some
simple sets are: (a) numbers from 1 to 99, (b) even numbers, (c) three
to five letters. (d) two numbers separated by a space, and (e) a fraction.
Some complex sets are: (a) numbers which have three or more factors,
and (b) a digit followed by at least as many letters as that digit signifies.

13o4h the domain and the range must be simple seta for instructional

reasons. The student should not spend much of his time trying to under-

stand the domain set or trying to create legal inputs that would pull his
attention away from the crucial task of inferring the rule. The domain

set is described explicitly in the input mode display for the problem, so
it must have a simple verbal description. In the example in Figure 2,

the description of the domain was "A NUMERAL BETWEEN 1 AND 99."

The rules that the FUNCTIONS program presents must also be
simple. A simple rule can be described easily in words and contains no
arbitrary exceptions. As with simple sets, examples will best illustrate
the meaning of simple rules (see Table 1).

13
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TABLE 1

Examples of Simple and Complex Rules

PROBLEM

SIMPLE EXAMPLE --I

Even numbers become "EVEN";
odd numbers become "000."

2026 BECOMES EVEN
21 BECOMES ODD

Each number becomes itself plus 6. 12 BECOMES 18
314 BECOMES 320

Each domain element becomes itself in
reverse order.

2341 BECOMES 1432
RAT BECOMES TAR

Each domain element becomes the number
of characters in the element.

AXBR BECOMES 1
12 BECOMES 2

Each domain element becomes its left must
character.

8134 BECOMES 6
941 BECOMES 9

COMPLEX

Every number becomes twice itself except
that 21 BECOMES 12.

504 BECOMES 1008
21 BECOMES 12

Every number becomes the number of
characters in its corresponding Roman Numeral

312 BECOMES 6
88 BECOMES 8

The simplicity of a rule is a relative concept depending on the
knowledge of other rules the student brings to the problem. For most
adults, long division is a simple rule; for a student who has not yet
learned it, long division is complex. This point will be illustrated at
length in the section on how the math curriculum was prepared for pre-
sentation. Special procedures were developed to simplify complex rules
by teaching appropriate preliminary rules.

The rationale for requiring simple rules is motivational. Experi-

ence working in FUNCTIONS must lead to positive feelings or people will

not seek the experience. People will be frustrated by complex rules,
with arbitrary exceptions. so that simple rules will be easier and more
satisfying to solve.

14
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Some Examples of Problems. More than eight hundred probl,:ms

are available for presentation by the FUNCTIONS program. A selection

from the problems is contained in Table Z. Each problem is described

by its domain, its range, and the verbal statement of the rule. Examples

of each problem acct tnpany the description.

TABLE 2

Examples of FUNCTIONS Puzzles

PROBLEM EXAMPLES

Domain 111.1mbers 1 to 99

Range Num 17Is ) to 105

Rule Domain element n mauled by 6.

8
91
21

BECOMES 12
BECOMES 97
BECOMES 27

Domain. 6 to 11 letters

Range Single let turs

Rule Second letter of the domain is
the range element

GMRSV
TLMDYVTR
ABCEDFGH

BECOMES M
BECOMES L
BECOMES 8

Domain Two numerals separated by space.

Range. The signs > < . =

Rule If the two numbers are equal. :
it the first is greater than the
second. > . if the first is less
than the second. <411....

28 43
264 26

482 481
34 34

BECOMES <
BECOMES >
BECOMES >
BECOMES =

15
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TABLE 2 iconic!)

Examples of FUNCTIONS Puzzles

PROBLEM EXAMPLES

Domain:Domain: A number 1 to 9%

Range. A number 1 to 9999

Rule Domain element is multiplied by 1,
then 12 is added.

4
14

114

BECOMES
BECOMES
BECOMES

24
54
354

Domain:

Range.

Rule.

A digit then some let tars

An letters and word "NO"

Let N equal the digit. If there
are at least N setters, answer is
the Nth letter. Otherwise "NO

2A8MC
9RMX

7RAXM
4TLCDR

BECOMES
BECOMES
BECOMES
BECOMES

B
NO
NO
D

Domain:

Range:

Rule:

1 to 5 letters

Digits

The number of letters in the domain
element.

ABC
TRMX

CLMWO

BECOMES
BECOMES
BECOMES

3
4
5

Domain: 1 to 18 letters

Range. Numbers 1 to 18

Rule. The number of letters in the domain
element.

RMXLTV
ORSTUMXLT

ABM

BECOMES
BECOMES
BECOMES

B
9
3

Domain. 2 haters

Range. 2 letters

Rule: The first letter of the range is the
first letter of the domain The
second letter of the range is the
letter of the alphabet after the
second letter of the dornain

PU
EL

ON
UN
WL

BECOMES
BECOMES
BECOMES
BECOMES
BECOMES

PV
EM
00
UO
WM

Domain

Range.

Rule.

I to 9 letters

I to 9 letters

The domain element is written
backwards.

ARMX
TUWLTRV
MABCBAM

BECOMES
BECOMES
BECOMES

xMRA
VRTLWUT
MABCBAM

Domain.

Range

:we:

.........
I to 9 digits

1 to 5 digits

Range every other digit of domain
element, starting with the first.

9185
21387

2222222

BECOMES
BECOMES
BECOMES

98
237
2222

16
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3. '-3roblem Solving and FUNCTIONS

The last tit bsections described the interaction of the student with
the FUNCTIONS program and the kinds of problems which are presented
by tin. program. This subsection describes how each component cf the
FUNCTIONS program was designed to teach problem solving skills by

the structure it imposes on the interaction. Design decisions an: always
based on assumptions. We hypothesize that the structural features of
FUNCTIONS described in the sections that follow will, in fact, teach the
skills they are designed to teach. A forthcoming paper will relate
empirical findtugs to these hypotheses. Eight skills comprise the model
of problem.. solving fcr FUNCTIONS; this subsection shows precisely which

interaction features were designed to teach each component skill. The

eight skills are: (a) stating the problem clearly, (b) gathering data, (c)
organizing data. (d) using feedback. (e) formulating and testing hypotheses,
(f) knowing you have finished, (g) dividing a problem into subprotlems,

and (h) integrating subsolutions into a full solution.

Stating the Problem Clearly. Stating the problem clearly is
essential to solving any problem. Whenever a student works with the
FUNCTIONS program, he knows that he must induce a rule from the
examples provided. He knows the two modes of interaction (input mode
and test mode) which he can use to help him solve the problem. Tiis
regularity of the tas.< is imposed by the structure of the program. The

specific rule used in a problem is not important in defining the problem.
In fact, if the student knew the rule, he would no longer have a problem
to solve.

Gathering Data. Gathering data is crucial to problem solving.
Both interaction modes in the FUNCTIONS program cause data to accumu-
late. The input mode give:, specifically requested data. The test made

17
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gives randomly generated data from within the domain set. The program

emphasizes the importance of data gathering for problem solving by

continually increasing the store of data.

The two modes for gathering data require different activities from

the student. Input mode requires active data seeking with a passive
response; test mode requires passive data receiving with an active

response. In input mode, the student must create his own domain

element, to help him explore a specific hypothesis about the rule. For-
mulation of the domain element is an active process akin to designing an

experiment in science. When the computer processes the domain element
and displays the corresponding range element, the student can take in

the data with no further overt response. In test mode, the student is
given the domain element by the computer. He must then process it
according to the rule, as he has formulated it, and produce a range
element. The computer judges the response, and displays the correct

answer with appropriate feedback.

Both methods of data gathering are common. The FUNCTIONS
program makes the two modes explicit and allows the student to try both.
Students may be more comfortable using input mode; °theta may prefer

test mode for data gathering. Neither method is ideal; the students using
FUNCTIONS have the opportunity to determine and exercise the style of

data gathering best suited to their individual needs.

Organizing Data. Organizing data makes extracting information
easier. The tabular form in which the domain-range pairs are displayed
and the parallel form in which test errors are displayed are two features
of FUNCTIONS which organize the data for the student.

The overall tabular form of the display places one complete domain

range pair on ea-h line. None of the ir,-elevant, repetitive text such as

18
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positive feedback on correct tests or the input mode prompts are con-

tained in the main display. Such irrelevant text would reduce the density

of information and make the display less useful. The columnar arrange-
ment of the domain and range elements facilitates scanning the display

and makes it easier to extract information. The word "BECOMES,"

displayed on each line. separates the domain from the range elements
and further organizes the display. (See Figure 11. )

/170TH FRACTIONS MUST HAVE THE SAME
DENOMINATOR

10/24 4. 3/24 BECOMES 13/24
7/35 4. 17/35 BECOMES 24/35

51/35 4. 18/35 BECOMES 69/35
7/10 4. 3/10 BECOMES 10/10

NOT 10/20

Figure 11. The tabular form of the display

The parallel form in which test errors are displayed facilitates
character by character comparison of the correct answer with the student's
answer. In Figure 11, the student could easily notice that the numerators
of the two answers were the same, and isolate his difficulty as the differ-
ence between the two denominators (10 and 20). This would then focus

his attention on figuring out how to get the correct denominator when
adding two fractions.

In addition to the two program imposed data organizing devices,
the program allows the student to further structure his data by the inputs
he creates. When the inputs are numeric, putting in sequential numbers
can create an organized display which greatly aids problem solving. When
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the input is alphabetic-, syst,matic inputs such as the alphabet, or a

string of identical letters often produce especially useful displays. We

expect students to discover this powerful way of using the input mode.

Using Feedback. Using feedback is essential to problem solving.

When feedback is clear, as it is in the FUNCTIONS program, the student

can learn to use it. Feedback in FUNCTIONS occurs in several ways,

all of which were described before.

In input mode, the program responds to suggested domain elements

with appropriate teedbak. If the suggested domain element is legitimate,

the program produces a correct input display showing the student one

new domain- range pair. (Se Figure i. ) If the suggested domain element

is illegitimate, the program produces an incorrect input display, telling

the student why his element is incorrect. (See Figure 4.1 When the stu-

dent has stayed in the input mode too long, he is requested to change to

the test mode. (See Figure (1.1 The request is an important fc attire:

the program could require the student to change. The distinction is

crucial: by allowing the student a choice, the program gives him an

opportunity to respond to feedback. By requiring the student to change,

the program would force him into passive acceptance.

In test mode, the program feeds back the correct answer and a

congratulatory message (GREAT!) when the student is correct. (See

Figure o. ) When the student is incorrect, the program displays the cor-

rect answer and his answer in a format designed to facilitate comparing

the answers. (See Figure 7.

On incorrect answers the student is automatically switched to

input mode. Once he begins testing himself, he can only return to input

mode by making an error. The switch in modes is feedback to the student,

telling him that after errors, inputs are likely to be helpful. Again, as
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with other feedback from the program, the student may ignore the feed-
back and transfer back to the test mode. After six correct tests in a
row, the student is requested to change to a new problem. (See Figure

10, I Again, the request allows the student an opportunity to respond to
feedback rather than forcing him into passive acceptance,

The final feedback message concerns incorrect use of the change

option. The student may not change puzzles without testing himself.

(See FiLture 8. Feedback on incorrect use of change is coercive; the
student cannot ignore it. The reason for this one exception to the general
ban on coercive feedback is technical. The FUNCTIONS program gets

all of its information about student understanding from test mode responses.
If there are no tests, the program cannot decide what the student should
do next; therefore, at least one test is required.

Formulating and Testing Hypotheses. Formulating and testing

hypotheses is an important problem solving skill. The FUNCTIONS pro-

gram was designed to force the student to engage in hypothesis formation

and testing. In the input mode, some hypothesis guides the choice of

domain elements. By his inputs. the student can refine his emerging
theory. Most students predict the outcome of an input before the com-
puter displays it and check their implicit prediction against the explicit
outcome. In test mode, the student must actively isc his hypotheses
to create an answer. The computer feedback on the answer tells the
student if his answer was correct, and he can use that information to
further refine Lis hypothesis or to strengthen his belief in it. When the

student gtves an incorrect answer, he is returned to the input mode.
(See Figure 7,1 This change reflects th? necessity of refining the cur-
rent hypotheses, and suggests that further inputs may help.
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Knowing You have Finished. Knowing that you have finished a

problem is sometimes difficult. In FUNCTIONS, the student can never

be certain that he understands the rule completely, no matter how many
correct predictions he makes on tests. Nonetheless, as the number of
correct test items increases, the probability that the hypothesized rule
is incomplete rapidly approaches zero. All puzzles were designed so that
five correct tests in a row can occur by chance less than 5 percent of the
time. For moat puzzles, three correct tests in a row can occur by chance
less than 1 percent of the time. Knowing when you have finiqhed a FUNC-

TIONS puzzle is equivalent to recognizing when the chances you are just

guessing correctly become sufficiently small, or when the chances you
will ever succeed on the puzzle become too small. Students should type

"CHANGE" when they have correctly answered several tests in a row, or
when they have failed to answer a test correctly, and have no idea about
how to proceed. We expect that students will learn to recognize these two
conditions, and use CHANGE to begin a new puzzle. Two features are
designed to help: the request to "PLEASE TYPE 'CHANGE' SOON" when

the student has six or more correct tests in a row, and the message
"YOU MUST TAKE MORE TESTS BEFORE TYPING 'CHANGE' " when

the student has not taken enough tests to demonstrate mastery.

Subdividin& Problems and Integrating Subsolutions. Dividing a

problem into subproblems and integrating subsolutions into full solutions
are effective heuristic strategies for solving problems. The FUNCTIONS
program models the strategies and provides opportunity for the student to
practice them. Modeling occurs across problems rather than within one
problem. The ecquence of problems presented requires the s..udent to
build more and more complex rules from those he already knows. The
subsection on preparing the mathematical content for use with the FUNC-
TIONS program illustrates this point in detail, and tise reader is referred
to that discussion.
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Opportunity to practice dividing a problem into subproblems occurs
in each problem. It is often easier to formulate a rule for some particu-
lar class of elements within the domain set than to formulate an all inclu-
sive rule. An example will clarify the point.

Consider the display in Figure 12. The first three domain range
pairs were presented as samples. The student typed in two inputs (1111
and 2222) to determine if single digits were being transformed. In this
case, the inputs were extremely helpful; each digit 1 is transformed to
8, each 2 to 3. Dividing the original problem into ten subproblems makes
the problem tractable. The full rule requires each digit to be transformed
into its arbitrarily selected partner. Integrating the ten partial rules into
the full rule creates ilie final solution.

r386 BECOMES 570
1914 ubCOMES 8236
2843 BECOMES 3765
1111 BECOMES 8888
2222 BECOMES 3333

TYPE A NUMERAL BETWEEN 0 AND 9999
OP -TEST- OR "CHANGE."

..01
Figure 12. Display illustrating subdividing problems

Summary of Problem Solving and FUNCTIONS. This subsection

examined how the FUNCTIONS program teaches problem solving skills
through its structure. The structure limits what the student can do and
focuses his energy into productive problem solving activities. Each fea-
ture of the program is included for its contribution to teaching of problem
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solving. Eight skills were examined and discussed in light of the particu-

lar program features designed to teach them.

C. Preparation of Mathematical Content

This section first describes where functions occur in elementary
school mathematics curricula in general and how the Individualized Mathe-
matics system includes features making it especially adaptable for teach-
ing with the FUNCTIONS program. The next subsection details the method

of analyzing objectives and creating teaching sequences for presentation
with the FUNCTIONS program, taking into account the fact that every
puzzle presented must be a function with simple domain and range sets,

and a simple rule. The section closes with an extended example of how

one specific objective is taught using FUNCTIONS. The example illus-

trates how every objective is taught.

1. Functions in Elementary School Mathematics

The abstract, mathematical concept of function becomes concrete
in elementary school mathematics in the form of computational skills and
a variety of other skills such as counting and naming numbers. All ele-
mentary school mathematics curricula emphasize skills based on learning
and extending functions.

To R e e clearly how a specific skill corresponds t.o a function, you

must identify the domain set (the things which are transformed), the range
set (the things which domain elements become when transformed), and

the rule which is used in the transformation. Several examples will

illustrate how to do this.

In most elementary school mathematics curricula, students learn
to look at a numeral written in standard notation and decide whether the

number is even or odd. What is the domain set? The things transformed
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are standard numerals for whole numbers like 64, 13, 86, 934, and 2167.

What is the range set" The things the domain elements become are the

words "EVEN" and "ODD. " What is the rule? Several different rules

are adequate; all of them are equivalent. One such rule is: "Examine

the right-most digit of the domain element. if it is an element of the set

{0, 2, 4, 6, I), then the corresponding range element is 'EVEN'; other-
wise, the corresponding range element is 'ODD.' " Notice that each range
element corresponds to many domain elements, but each domain element

corresponds to only one of the two range elements.

As a second example, consider the skill of adding two single digit

numbers. All elementary school mathematics curricula require students

to master this skill, often at several different levels. Different behavior

is adequate for mastery at different times. Initially, counting with blocks

or fingers might be enough; later, immediate recall without aids is

required. To be concrete, assume the student must v.se an addition

table to produce his answer. What is the domain set? The things trans-

formed are pairs of numbers, each of the two numbers is between 0 and

9. Domain elements are represented as "6 + 4" or "9 + 0" or "3 + 4."

What is the range set? The things the domain elements become are the

numbers between 0 and 18. What is the rule? One possible rule is:
"Lock for the first number on the top of a column in the addition table;

look for the second number at the left of a row; find the number at the

intersection of the column and row and repeat that number." Each pair

in the domain corresponds to one range element. This rule might be an

extension of previously learned rules about tables or a completely new

rule, depending upon the specific curriculum in which it is embedded.

The third and final example is the skill of determining which of

two numbers is larger. Assume the two numbers are represented as
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standard numerals. The domain set is pairs of numbers again, each num-

ber between 0 and 999. The range set is the three signs for greater than,

equal to. and less than: t>, r-,< 1. The rule is: "If the two numerals

are identical. the numbers are equal; if one is longer than the other, it

is greater. If both are the same length, match digit-by-digit from the

left until one has a larger digit; that number is greater."

All elementary school mathematics curricula include the three

functions discussed above. In addition. most contain other functions

involving the basic calculation algorithms of addition, subtraction, multi-

plication, and division of whole numbers. Many curricula also teach
counting of objects or symbols, Roman numerals, word names for num-

bers, place values, and rounding off. These and other concepts can be

viewed as instanePQ of the abstract concept of functions and are, there-

fore, possible concepts to teach using the FUNCTIONS prograe14.

Z. The Individualized.Mathematics System

While every elementary school mathematics curriculum contains
substantial portions that could be taught with FUNCTIONS, the Individu-
alized Mathematics system (Lindvall & Bolvin, 1966) developed at the

Learning Research and Development Center has characteristics which

make it particularly suitable for our purposes. The desirable charac-

teristics of Individualized Mathematics include the individualized, self-
paced instruction, the behavioral specification of content, the guaranteed
mastery learning of al: skills, and the clear statement of the prerequisite

skills for each new skit. The next paragraphs clarify the reasons these

characteristics are desirable.

The Individualized Mathematics system requires each student to

learn each skill in the curriculum. Instruction is always aimed at indi-

vidual students rather than at groups of students. No one ever advances
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because others advance; each student learns independently. The individu-

alized character of all instruction in the system makes it particularly

suited to individualized instruction on the computer. The self-pacing

character of the curriculum means the student can exercise more control

over his instruction than he could in more rigidly paced systems.

All content in the Individualized Mathematics system is specifi

behaviorally. Behavioral specification makes clear exactly what the stta

dent mist do to demonstrate mastery. Each objective in the curriculum

is a speL .fic step forward in the student's knowledge, anc. it can be taught

in a variety of ways. Behavioral specification makes it possible to deline-

ate precisely what domain set, range set. and rule must be taught for each

objective.

Mastery learning is fundamental to the Individualized Mathematics

system. Each student takes a test on each objective. He must pass with

more than 85 percent correct before he is allowed to progress to the next

skill. In this manner, the system assures that each student knows each

skill before he advances to the next skill. No one advances simply because

the rest of his class is ready to advance. Each student masters each skill

in the curriculum.

Finally, the Individualized Mathematics curriculum clarifies what

the student knows before he begins his study of a new objective. He has

demonstrated mastery of each skill before the current skill, and instruc-

tion is built on the assumption that he remembers most easier skill3 as

defined by the curriculum sequence. This assumption offers an enormous

advantage over less structured curricula in which prerequisite behaviors

are unclear. Instruction can be far less branched and complex when

entry skills are known.
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The Individualized Mathematics system contains approximately

four hundred objectives for kindergarten through sixth grade. One hundred

sixty of those are concerned with functions. Most other mathematics cur-
ricula would have a similar percentage of their content concerned explicitly

with functions. In the discussion that follows, examples are taken exclu-

sively from the Individualized Mathematics system.

3. Creating Teaching Sequences

The previous subsection demonstrated that a 1.4nificant fraction

of the skills in the Individualized Mathematics curriculum requires the
student to learn or generalize functions. This subsection describes how

teaching sequences for such skills are created for use with the MATH

FUNCTIONS program.

Overview of Creating Teaching Sequences. The MATH r UNC-

TIONS program can teach skills by presenting an ordered sequence of
puzzlc..3 beginning with a rule the student already knout s= and progressing

by small steps to the criterion performance. Each puzzle in the sequence
must be only slightly more difficult than the previous puzzle so that the

student can induce the rule. If great gaps in difficulty exist, students

will fail to induce the rules and fail to learn the criterion performance.
A sequence of five puzzles is sufficient to teach most objectives. This

section describes how objectives are analyzed and instructional sequences

are created. The next subsection provides a detailed example for one

objective.

Five steps are required to describe a teaching sequence once an

objective has been selected. First, the criterion behavior and the behav-
iors the student is assumed to possess must be described in precise

terms. Second, a puzzle which requires the criterion skill must be
designed. Careful attention is given to the domain, range, and rule to
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make them as close as possible to the corresponding domain, range, and

rule on the paper and pencil form. Third, a sequence of instructional

puzzles which proceeds by small increments of complexity from the entry

behavior to the criterion behavior is designed. This instructional sequence
does the teaching in most cases. However, if the student fails to solve
the puzzle at entry level, he must have remedial material. The fourth

step in preparing a teaching seqt ence is to create a remedial sequence
of puzzles which every student should be able to solve. Fifth, a sequence

of extensions beyond the criterion behavior is prepared for students who

wisl: to generalize the required behavior. The rest of this subsection

examines each step in turn.

The Criterion and Prere uisite Performances. The first step in
preparing to teach a mathematical objective using the FUNCTIONS pro-

gram is to state as clearly as possible what the student must do when he

has learned the objective and what he already can do. Details, which

might be irrelevant to a human teacher, are essential to the computer
program. Consider an example: Suppose the student must learn to add.

Much is left unclear. How many members must he add at once? What

kind of numbers are involved--whole, negative, fractional, decimal, or
imaginary.' How large are the numbers? The clearer statement, "Given

two 2-digit positive integers, the student will add them," is sufficient
for most purposes. However, for a computer program, more must be

specified: Should the student have to regroup (carry) from the ones place
to the tens place? Should the sums be limited to 2-digit numbers as the

addends are? One complete statement of the objective would be: "Given

two 2-digit positive integers, the student will add them. The sum must

be a 2-digit integer. Regrouping should occur in the ones' place in half

the teat items." All the details of the criterion performance are speci-

fied before any instructional puzzles are designed.
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Fur the same reasons the criterion performance :3 prcci.tzly
specified. the prerequisite performances must also be specified pre-
cisely. Prerequisite performances will be simple for the student and,
therefore, can serve as introductory puzzles for the lesson.

The Criterion Puzzle. The second step in preparing a teaching

sequence '.4 to create a domain. range, and rule which match the criterion
performance as closely as possible. Certain features, important to the
problem solving aspects of FUNCTIONS, restrict the choice of cl,:main,

range, and rule. The domain and range elements must be short, fitting
on one line of an alphabetic or numeric display and the sets must be sim-
ple. since complex setts require too much attention of the student. Rules

must also be simple relative to the student's prerequisite skills. For
most objectives. creating the criterion puzzle is a straightforward exer-
cise once the objective has been precisely stated. For the objective

stated in step one, the domain set would be "two numerals between 10

and 99 separated by '+' whose sum is less than 100"; the range would be

"a numeral between 20 and 99"; and the rule would be "add using the

standard algorithm." Typical samples for this puzzle appear in Figure
13.

12 + 67 BECOMES 79
23 + 41 CECOMES 64
34 + 37 BECOMES 71

Figure 13. Sample display for criterion puzzle

For a few objectives, the domain of the criterion puzzle is unavoida-
bly complex. making a impossible to meet all the restrictions on puzzles

simultaneously. In such cases, the student is taught to understand the
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complex domain in small steps just as he is taught the complex rule.

The extended example in the next section describes a teaching sequence

for an objective with a complex domain.

The Main Instructional Sequence. The third step In preparing a

teaching sequence is to create a sequence of puzzles which begins with

an entry performance and ends with the criterion performance. Each

puzzle differs from its immedir to predecessor by a small increment in

complexity, either in the rule or in the domain. Creating such sequences

is something of an art, although there are some clear guidelines for what

makes puzzles more complex. The rest of this section contains a warning

about possible pitfalls, and then presents some rules and examples to

illustrate how instructional sequences can be created.

The Overall Strategy and Its Difficulties. To make a puzzle more

difficult, you can normally change the domain, the range, or the rule,

but not more than one at a time. However, there is no infallible way to

create two puzzles which differ by a small increment in complexity.

Some seemingly trivial changes cause great differences in puzzle com-

plexity. To a large extent, the complexity of a puzzle depends on what

the student knows, and the author of a sequence must place himself in

tivA student's mind as best as he can.

In order to clarify the point, consider the following example.

Suppose two rules operate on the same domain and range: Numbers from

1 to 100 are transformed to single digit numbers. The rules are slightly

different in case one, the single digit is the remainder on division by

nine; in the second case, the single digit is the remainder on division Iqr

ten. The rules differ only in one word and naively seem about the same

diffieuly; however, "the remainder on division by ten" is equivalent to

"th., last digit of the number," and students will invariably solve the
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second rule in this sin.pler fashion. in less obvious cases, it takes con-
siderable imagination to anticipate how students, or even other adults,
will solve puzzles. Frequently, different people solve puzzles with com-

pletely different rules.

The Four Ways to Make Puzzles More Complex. With the warning

of the last section still in mind. let us consider four ways in which puz-
zles can be made slightly more complex: (a) the domain can be ex'ended

to larger numbers with the same rule in effect; (b) one more symbol can
be added to the domain; ;c) a rule can be generalized to a new iomain;
and (d) a rule can combine two previously mastered rules. ".he next.para-
graphs give examples of each type of change from actual te.ching sequences.

Extending the domain to larger numbers with the same rule pro-

duces a more complex puzzle. In one objective, the student learns to
solve open addition number sentences for the unknown "N." The addends
and the sum are all whole numbers less than 99. In one puzzle, the

addends are restricted to numbers less then 10, and the student learns
to subtract to solve such number sentences as:

N + 6 = 11 BECOMES 5
5 + N= 7 BECOMES 2

In the next more difficult problem, the addends are allowed to be as large
as 99, with sums also up to 99. The same rule is executed on larger num-

bers.

As a second example, students learn to round off numbers to the
tens' place for numbers up to 100 in problems such as:

21 BECOMES 20
37 BECOMES 40

9 BECOMES 10
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The next puzzle is more complex, because the numbers are allowed to be

as large as 999. The next puzzle would again extend the domain to num-

bers as large as 9999, yielding problems such as:

2158 BECOMES 2160
3472 BECOMES 3470

261 BECOMES 260
24 BECOMES 20

Addin6 one symbol to the domain makes puzzles more complex,

since the relevant stimuli are masked by the new symbol. Consider

again solving addition number sentences. An early puzzle requires the

student to add the two numbers:

6 5 BECOMES 11
2 + 1 BECOMES 3
3 + 0 BECOMES 3

A more complex puzzle introduces the symbol "N" to the domain prepara-

tory to moving the "N" to various positions:

N 2 4. 1 BECOMES 3
3 + 7 = N BECOMES 10

In rounding off objectives, the instructions about the place to round

off to can be carried in a symbol before the actual number. The notation

"10 124" tells the student to round 124 to the tens' place; while "100 124"

tells him to round to the hundreds' place. Initially, the two number sym-

bol is too complex, so it is introduced as a extension to a dor-ain. First

the student learns to round aumbers up to 1000 to the tens' place.

231 BECOMES 230
624 BECOMES 620
937 BECOMES 940

In the next puzzle, the constant "10" is added to the domain element,

while the same rule remains in effect:
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10 231 BECOMES 230
10 624 BECOMES 620
10 937 BECOMES 940

Generalizing a known rule to a more extensive domain makes the
puzzle more difficult. Generalization differs from simple extension to
larger numbers in that the rule itself must be changed. Suppose a student
has learned the Roman numerals up to five (I, II. III. IV, and V). His

rule is probably quite particular: in fact, for 4 and 5, he has probably
mastered a simple association. If he now must learn the Roman numerals
to 10. he will need to generalize his rule. Further extensions to 50 and
100 will lead to a more generalized statetnent of the rules for changing
Arabic numerals into Roman numerals. A second example of generalizing
a known rule occurs when learning to add. Suppose the student knows

how to add two 2-digit numbers to get sums up to 198. His rule may
involve specific statements about the ones' and tens' places and not be
general enough to allow him to add twu 3-digit numbers reliably. Extend-

ing the puzzle to require him to add 3-digit numbers will force him to
generalize his rule. A student who knows how to add in two base systems
may be asked to generalize his knowledge to a third base system.

A puzzle in which the student must cornbine two previously mas-
tered rules is more complex than a puzzle based on either rule alone
would be. Suppose the student has learned to multiply frattions without

reducing the result and has also learned to reduce a fraction to lowest
terms. A puzzle which required the student to multiply and then reduce
to produce the range element would be more complex than either rule
alone. Suppose the student has learned to carry out additions of 2-digit
numbers ar-I has also learned to compare two numbers less than 100 for
size:
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21 ? 64 BECOMES <
21 ? 14 BECOMES >
14 ? 41 BECOMES
12 '? 12 BECOMES

The combined rule requirint3 him to add and then compare will be more

complex:

20 + 16 ? 31 BECOMES >
12 ? 7 + 5 BECOMES =

61 + 12 ? 68 BECOMES >

In this case, the domain has also become more complex. These are

often difficult to separate. A further increment in difficulty would be

required if both sides of the "?" were problems:

21 f 16 ? 34 + 12 BECOMES <
17 + 23 ? 23 + 17 BECOMES

More difficulty still can be introduced by allowing the operations in each

problem to vary:

21 + 34 ? 34 - 21 BECOMES >
9 X 3 ? 12 + 13 BECOMES >
6 X 4 ? 38 - 16 BECOMES >

Combining previously mastered rules is the most common way to increase

difficulty in a teaching sequence used with the FUNCTIONS program. A

sequence of puzzles can be prepared by usirg one or more of the tech-

niques for making puzzles slightly more complex. The sequence begins

with skills the student is assumed to know, the entry performance, and

proceeds in a few steps to the criterion performance. If each step is

sufficiently small, the students will proceed easily to master the criterion

performance. Some puzzles are designed to give remedial assistance

because students sometimes forget what they already know.

The Remedial Sequence. The fourth step in creating a teaching

sequence for an instructional objective is to produce a remedial sequence
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of puzzles that every student, who has mastered the prerequisites, should
be able to solve easily. The remedial sequence is used only by students
who do not exhibit the entry performance in the instructional sequence.
There are three reasons students fail entry performance: They are
unfamiliar with the FUNCTIONS program; they forget one or more pre-

requisite skills; they do not recognize the domain elements as ones they
know how to manipulate. The three causes of failure require differential
cousideration.

If the student is unfamiliar with the FUNCTIONS program, any
additional work where the rule is easy should be helpful to him. He can
"play around" on easier levels and learn to use the input mode, the test
mode, and to change levels. No special puzzles are required.

If the student has forgotten one or more prerequisites, he may
remember them with opportunity to practice. For such a student, puz-
zles requiring the prerequisite rules with no additional complexity are
important. Remedial sequences include such puzzles.

For the student who has difficulty with the domain, a simpler puz-
zle whose domain contains one less symbol is helpful. A puzzle whose
domain is identical, but whose rule is simpler, is equally likely to help.
The student might he required to copy part of the domain to focus his
attention on that part as a single symbol. For example, if the entry level
for solving addition number sentences has a domain with many symbols
such as "3 + 17 = N," and the student fails that level, a remedial level
should maintain the domain, but change the rule to "copy the addition
problem ":

3 + 17 = N BECOMEE7 3i 17
21 + 14 = N BECOMES 21 +14
N = 16 + 34 BECOMES 16 + 34
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Generally, the same methods apply to creating remedial sequences
as apply to the main instructional sequences. The objective of the reme-

dial sequence is to provide the student with the help he needs to begin
work in the instructional sequence regardless of the cause of his diffi-
culties.

The Post-Criterion Sequence. The final step in preparing a
teaching sequence for a mathematical objective is to provide post-
criterion extensions of the performance the student has )earned. These

additic.nal puzzles are created according to the same principles as the
main instructional sequence: Small increments in complexity are used
to help the student generalize his rule and to apply the rule in new con-

texts. Post-criterion puzzles are optional for the students, but most
choose to try at least one.

Summary of Creating Teaching Sequences. This subsection has

set out general principles by which teaching sequences are created.
Five steps are followed: (a) analyses and statement of the criterion and
prerequisite performances; (b) description of the criterion performance
for FUNCTIONS: (c) creation of a sequence of puzzles which increases by
small steps from the entry performance to the criterion performance;
(d) creation of a remedial sequence; and (5) creation of a post-criterion
sequence. Teaching sequences were prepared for 120 objectives using

these five steps. The next subsection des tribes how one of those 120

teaching sequences was created.

4. An Example of a Teaching Sequence

The last subsection described the general method for creating
puzzles to teach mathematics content in the context of the FUNCTIONS

program. This subsection contains a detailed example of the preparation
of one objective. Each of the five steps outlined in the last subsection is
illustrated.
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Describing the Criterion and Prerequisite Performance. The

objective, selected from the Individualized Mathematics system, requires
the student to add two fractions, each less thar one, with the same
denominator and to state if the sum is less than, equal to, orgreater
than one. The student uses the standard signs ( <, =, and>) for less
than, equal to, and greater than. The statement of the objective leaves
some parameters unspecified. How large can the sum of fractions be?
How larg can the denominator be? Should the sum be reduced? The

full specification of any objective in the Individualized Mathematics sys-
tem includes the criterion-based, curriculum embedded test (CET), some
items of which appear in Figure 14. All denominators on the CET are
less than 100; the sum of the numerators is less than 100 and less than
twice the denominator. Since the addends are not reduced to lowest terms
(22/58 = 11/29), the sums need not be reduced.

Add the fractions. Then write > , < , or = in the Ei to
show whether the sum is greater than, lea than,
or equal to 1.

22 + 23 a The sum
58 58

5
11 11

The sum jJ 1

34

25
34

The sum El 1

FigurE. :4. Criterion items for adding fractions and
comparing the sum to one.
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The criterion performance is now clear. What entry level skills

are assured by the student's progress through Individualized Mathematics
before he encounters this objective? The four nearest prerequisite skills
in the curriculum include: (a) given two numbers less than 99, the stu-
dent adds to obtain a sum lest; than 99; (b) given a specified denominator
up to 10, the student writes a fraction equivalent to two wholes; (c) given
an improper fraction between 1 and 2, the student rewrites it as a mixed
fraction; and (d) given two numbers up to 99, the student compares them
using the signs " <," "=, " or "> " for less than, equal to, or greater
than.

These four performances make the teaching task clearer. The
student knows how to add the appropriate numbers; he must be taught

which numbers to add. The student knows some fractions are larger
than one; he must be taught to use that knowledge to assign the correct

comparison. The student knows the'concepts of greater than, less than,
and equal to; he must be taught to apply them to fractions. The student

knows how to compare numbers of the appropriate magnitude using the

three signs; he must learn which numbers to compare.

Preparing a Criterion Puzzle. The second step in preparing a
teaching sequence is to create a puzzle in FUNCTIONS format which
approximates the criterion performance. Remember, there are three
conditions which must be met: The domain and range elements must be
displayed on a single line and must be made up of standard typewriter
characters and certain special symbols; the length of the domain plus
range elements must be less than 72 characters; the domain, range, and
rule must all be simple relative to the student. The conditions do impose

constraints on the puzzle in this case.
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The curriculum embedded test (CET) items in Figure 14 use a
multiple line symbol for a fraction: On the computer, a fraction must be
represented on one line: "22/58." In the CET, both horizontal and verti-
cal addition occur. On the computer, only horizontal addition fits on erie
line: "22/58 + 23/58." The student makes two distinct responses on the
CET items: First he adds, then he compares. On the computer, the
response format is similar: "45/58 <. " A complete line for an item
then appears as:

6/11 + 5/11 BECOMES 11/11
18/23 + 17/23 BECOMES 35/23 > .

This form satisfies all the constraints on line format: It is short, it Is
typeable, and it fits on a single line.

Figure 15 describc3 the range, domain, and rule for the criterion
puzzle number 5, and for all the other puzzles in the teaching sequence.
The range for the criterion puzzle matches the numeric constraints of
the objective exactly. The domain also matches the numeric constraints
of the objective exactly, and the rule is also consistent. The criterion
puzzle then is a representation of the intended criterion performance,
and can serve as the final step in the teaching sequence.
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Puzzle 1, Remedial Level

Domain: Two numbers up to 9 with a "1" in between

Range: The signs > , <, and = .

Rule: Type the signs which must replace the "T" to make a true
statement.

Description for Student:

YOU ARE LEARNING TO ADD FRACTIONS WITH THE
SAME DENOMINATOR AND COMPARE TO 1

USE < FOR LESS THAN
> FOR MORE THAN

AND = FOR EQUAL TO

2 ? 2 BECOMES =
1 ? 5 BECOMES <
8 ? 4 BELJMES >

Puzzle 2. Remedial Level

Domain: Two numbers up to 99 with a "T" in between

Range: The signs > , < , and = .

Rule: Type the sign which must replace the "T" to make a true
statement.

Description for Student:

YOU ARE LEARNING TO ADD FRACTIONS WITH THE
SAME DENOMINATOR AND COMPARE TO 1

USE < FOR LESS THAN
> FOR MORE THAN

AND = FOR EQUAL TO

36 ? 8 BECOMES >
4 ? 87 BECOMES <

85 ? 85 BECOMES =

Figure 15. Instructional puzzles for adding fractions
and comparing the sum to one
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r Puzzle 3. Entry Level

Domain: A fraction with denominator less than 100 and numerator
less than 100 and less than twice the denominator.

Range. The signs < ." " and "> ."

Rule: Type the sign which must replace the "/" to make a true
statement.

Description for Student:

YOU ARE LEARNING TO ADD FRACTIONS WITH THE
SAME DENOMINATOR AND COMPARE TO 1

USE < FOR LESS THAN
> FOR MORE THAN

AND = FOR EQUAL TO

1/16 BECOMES <
22/22 BECOMES =,

Ritzle 4. Instructional Level

Domain: Two fractions as in Puzzle 3. with a "+" in between.

Range: Fractions with the same denominator up to 100 and
numerators less than twice the denominator and less
than 100.

Rule: The numerator of the range element is computed by
summing the numerators of the two domain functions.
The denominator is the same as the denominator of the
fractions.

Description for Student:

YOU ARE LEARNING TO ADD FRACTIONS WITH THE
SAME DENOMINATOR AND COMPARE TO 1

FRACTIONS MUST HAVE THE SAME DENOMINATOR

15/11 + 1/11 BECOMES 16/11
19/20 + 17/20 BECOMES 36/20

Figure 15 (Cont'd). Instructional puzzles for adding fractions
and comparing the sum to one
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Puzzle 5, Criterion Level

Domain: Two fractions as in Puzzle 3, with a "+" in between.

Range: Fractions as in Puzzle 4 followed by one of the signs
.. < ... ..... " > ...

Rule: The fraction is computed as in Puzzle 4, and the sign is
that which must replace the "/" of the sum In order to
make a true statement.

Description for Student:

YOU ARE LEARNING TO ADD FRACTIONS WITH THE
SAME DENOMINATOR AND COMPARE TO 1

USE < FOR LESS THAN
> FOR MORE THAN

AND = FOR EQUAL TO

FRACTIONS MUST HAVE THE SAME DENOMINATOR

15/11 + 1/11 BECOMES 18/11 >
19/20 + 17/20 BECOMES 36/20 >
2/17 + 5/17 BECOMES 7/17 <

Puzzle 8, PostCriterion Level

Domain: Fractions as in Puzzle 3. with a "+" in bowmen.

Range: The signs" < ," " = and " > ."

Rule: The fractions are summed as in Puzzle 4. The range
element is the sign needed to replace the "/" of the sum
in order to make a true sentence.

Description for Student:

YOU ARE LEARNING TO ADD FRACTIONS WITH THE
SAME DENOMINATOR AND COMPARE TO 1

USE < FOR LESS THAN
> FOR MORE THAN

AND = FOR EQUAL TO

FRACTIONS MUST HAVE THE SAME DENOMINATOR

18/23 + 21/23 BECOMES >
1/4 + 2/4 BECOMES <

Figure 15 (Coned). Instructional puzzles for adding fractions
and comparing the sum to one
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Puzzle 7, POStCrity.fiOrt Level

Domain: A 1 followed by "7" and a fraction with denominator less
than 100 and a numerator less than 100 and less than
twice the denominator.

Range: The signs " < ," " " and " > ."

Rule: Type " " i! the numerator and denominator are equal;
type > if the numerator is less than the denominator;
and type < if the numerator is greater than the
denominator.

Description for Student:

YOU APE LEARNING TO ADD FRACTIONS WITH THE
SAME DENOMINATOR AND COMPARE TO 1

USE < FOR THAN
> FOR GREAER THAN

AND = FOR EC 'A'. TO

1 7 84/42 P 7' `MES <
1 7 18/22 urMES >

Puzzle 8, PostCriterion Level

Domain: A fraction and the numeral "1" with a "7" between. The
"1" may be on the right or left of the fraction.

Range: The signs < ." and "> .
For domain elements with "1" on the left, follow rule of
Puzzle 7; with "1" on the right, ignore the 1 and type the
sign needed to replace th. "/" of the fraction to make a
true sentence.

Description for Student:

YOU ARE LEARNING TO ADD FRACTIONS WITH THE
SAME DENOMINATOR AND COMPARE TO 1

USE < FOR LESS THE N
> FOR GREATER THAN

FOR EQUAL TO

13/13 7 1 BECOMES
1 ? 8/12 BECOMES >

Figure 15 (Cont'd). Instructional puzzles for adding fractions
and comparing the sum to one

44



BEST COPY AVAILABLE

Puzzle 9, PostCriterion Level

Domain: An indicated sum of two fractions as in Puzzle 4, and the
numeral "1" separated by "7". The "1" may be on the
right or left of the sum.

Range: The signs " < ," " a " and "> ."

Rule: Add the two fractions as in Puzzle 4, and replace the
indicated sum by the actual sum in the domain. Then
follow the rule in Puzzle a

Descripti,in for Student:

YOU ARE LEARNING TO ADD FRACTIONS WITH THE
SAME DENOMINATOR AND COMPARE TO 1

USE < FOR LESS THAN
> FOR GkEATER THAN

AND = FOR EQUAL TO

FRACTIONS MUST HAVE THE SAME DENOMINATOR

1 ? 35/47 + 14/47 BECOMES <
13/14 + 7/14 ? 1 BECOMES

Figure 15 (Coned). Instructional puzzles for adding fractions
and comparing the sum to one
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":eparing the Instructional Puzzles. The :-riterion level puzzle

is too complex for a student who has never seen the notation in/ 111 for

fra:tions and has never added two fractions. One less complex instruc-
tional puzzle (Puzzle 41 requires the student to add two fractions with-
out doing the comparison. Puzzle 4 uses the same domain as the cri-
terion puzzle. but hat. a simpler range and rule.

Even Puzzle will be complex for a student just learning to add
fractions. A preliminary puzzle (Puzzle 31 teaches the student to recog-
nize the symbol for a fraction and to compare a single fraction to one.
The domain is fractions less than two with numerators and denominators
less than 100. The range is the set of symbols If . for less than.
equal to, and greater than. The rule requires the student to compare
the numerator and denominator of the fraction and supply the appropriate
sign. Since the student has already compared numbers without the
fraction sign. additional complexity of the ruie should be minimal.

The instructional sequence begins with Puzzle 3 and continues to

Puzzle S. In the first steo the student learns to recognize and type a
fraction for the domain element, and applies his knowledge of comparing

numbers to the numerator and denominator of the fraction. The next step

teaches the student to add two fractions and introduces a new symbol to
the domain which consists of two fractions separated by a phi.; (+) sign.

The criterion puzzle combines the addition and comparison rules into

one. The -:turient adds the two fractions of the domain as he did in the

preceding step. and then compares the sum to one as he did in the
initial teachir puzzle. The normal teaching sequence consists of these

three steps.

Preparing the Remedial S.,quence. Some students experience
difficulty maktn,4 the first indtmtion from the rule they know for comparing
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two numbers up to 99 to the rule for comparing a fraction to one. Two

remedial puzzles help such students.

The first remedial puzzle (Puzzle 21 requires the student to

recognize and recall the rule he knows to compare numbers less than

100. The symbol " marks the position where the correct sign should

be substituted. In Puzzle 2, the only new learning concerns the format

of the domain and the range; some students take several trials to learn

to type the range symbols correctly.

In the rare cases where remedial Puzzle 2 fails to help the stu-

dent recall his knowledge of comparing numbers, Puzzle 1 usually helps.

Puzzle 1 is slightly simpler, since the domain elements are smaller

numbers t,:p to Q1. The rule for Puzzle 1 is identical to the rule for

Puzzle Z, but the comparison is easier and more familiar, so the stu-

dent focuses his attention on the domain and range symbols; this prepares

the student for more complex rules he will encounter in Puzzles 2 through

5.

Preparing the Post-Criterion Sequence. At the post-criterion

end of the teaching sequence, the performance is extended to more dif-

ficult, but closely related skills. Puzzles 6 through 9 in Figure 15

extend the criterion performance. In Puzzle 6, the fractions must be

summed, but only the comparison to one is written as the range element.

Here the student practices the skill he learned in Puzzle 5, after he recalls

it and applies it to the new situation.

Tne rules for comparing fractions to oni! that the student induces

in Puzzles 3, C, and 6 depend on the fart that the numeral one is assumed

to be to the right of the fraction in the comparison. The rule is much

simpler than the more general ca:e where the "1" may be either on the

left or right. Comparing 2/3 to 1 is the same as comparing 2 to 3, as
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long as the 1 is on the right. The situation is different if the numeral "I"
is written explicitly on the left of the fraction or randomly on the right or
left. Puzzle number 7 introduces new complexity to the domain and to
the rule. The student must reverse his usual algorithm for comparing
a fraction to 1, and must notice the new symbol in the domain. In Puzzle
8, the position of the 1 can be either to the left or right of the fraction.
The student must generalize his rule for making the comparison, thus
generalizing the skill he has learned. Finally, Puzzle 9 combines the
addition of two fractions with the generalized comparison rule. This puz-
zle is more difficult because it combines two previously learned rules.

Summary of Example. This section explained the nine puzzles
in the teaching sequence for a typical objective. The increase of diffi-
culty between each puzzle is small, allowing the student to induce the new
rule from previously familiar rules and the examples provided in input
and test modes. In this objective, the domain becomes increasingly
complex at the same time the rule gets more complex.

D. MATH FUNCTIONS and the School

The MATH FUNCTIONS program was designed to operate on the
small computer resource at the Oak leaf Elementary School, a school
which has cooper...Jd in developing educational material with the Learning
Research and Development Center since 1964. The program is one com-
ponent of the Individualized Mathematics system which has operated in
the Oak leaf school since 1966. Th's section describes the relevant com-
ponents of the computer resource a id the relevant aspects of the manage-
ment of instruction under Individualized Mathematics. These aspects are
all normal operating procedures at Oak leaf, and required no special
modification when MATH FUNCTIONS was integrated with them. Certain
special procedures were required to assure that evaluation data were
available. These procedures will be described at the end of this section.
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1. The Small Computer Resource

Oak leaf School has had computer support for instruction, testing,

and management procedures since 1968. Originally, the computer was
controlled outside of the school, and could not be fully integrated with
the demands of the school. In Spring 1972, a small computer resource
(a PDP 15 with 32K core storage) was installed in a van outside of Or lc-

leaf, and now provides locally controlled service to the school throughout
the day. In spite of the computer's small size, it has an extensive time
sharing system (ETSS), designed and implemented by the Learning
Research and Development Center (Fitzhugh, 1970). ETSS currently sup-
ports 16 stations at which students work independently.

The fact that MATH FUNCTIONS is a computer program rather

than a text causes no special problems at Oak leaf School. The computer
resource is a part of the school environment, not a special research tool.
The computer stations are located in the regular instructional areas, and
every student knows how to use the stations. Whenever a program is
relevant to a student's work, whether he is learning new material, test-
ing himself, or recording his progress in the curriculum, he goes to any
available station and runs the arpropriate program. Specially prepared
flowcharts in the vicinity of the computer stations tell the student all he
needs to know to run the program he has selected. A flowchart was pre-
pared for MATH FUNCTIONS, and it became part of the computer resource.

The Management of the Individualized Mathematics System. A
previous section described the features of the Individualized Mathematics
system which make it particularly suitable as abase for MATH FUNC-
TIONS. These included the individualized, self-paced instruction, behav-
ioral specification of content, guaranteed ma.itery learning of all Ekills,
and the clear statement of the prerequisite skills for each new skill.
This section describes the school based procedures which allow every
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student to proceed at his own pace and guarantee mastery learning of all

skills. It also describes how the new instructional component, MATH

FUNCTIONS, was added to the system.

The Individualized Mathen atics system is based on approximately

400 instructional objectives. The procedures for self-pacing, instruction,
and guaranteed mastery operate identically for each objective. The rest
of this discussion focuses on a single objective, and describes all pro-

cedures in terms of that objective.

When a student has mastered all the prerequisites for an objec-
tive, he takes a competency test to determine if he can also perform the
objective. Some students do generalize skills without instruction. If

he passes the teat, no instruction is needed, and he moves on to the next

objective. If he fails, demonstrating his need for instruction, he and his
teacher examine all the available instructional materials for the objective.
These might include a programmed booklet, a practice program, manipu-
lative materials and a MATH FUNCTIONS teaching sequence. The stu-
dent and teacher confer and write down an instructional prescription. The

student proceeds to do the prescription, usually taking two or three math
periods to do so. When the prescription is complete, the student takes a

new competency test. If he has learned, he goes on to the next objective.

If not, he and his teacher write a new prescription.

Several features of these procedures are important: The student
does not need to go over what he already knows simply because others in

his class do not know it. The student skips objectives he knows. The
prescription is written specifically for the student in consultation with

him. He, therefore, does as much work as he needs, and can select the

manner in which he works. Finally, the student must demonstrate com-

petency on a performance criterion test before advarcing to a new objet;-

tive, thus assuring that he knows the material.
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Integrating a new teaching sequence from MATH FUNCTIONS

with the established management procedures only required that the

teachers and students know that the sequence is available; it is then con-

sidered as an option whenever a prescription is required for the relevant

objective. Thus, adding a teaching sequence for an objective is a simple

matter, and can be handled by routine procedures-

MATH FUNCTIONS teaching sequences terminate with a puzzle

equivalent to the criterion performance for the objective. Mastery of a

teaching sequence encompasses both the instruction and the competency

testing aspects of the Individualized Mathematics system. Once the

MATH FUNCTIONS program declares that the student has mastered an

objective, he can go immediately to the next objective. Use of the com-

puter program to both instruct and test saves considerable time over

normal Individualized Mathematics procedures.

Special Procedures for Formative Evaluation. When MATH
FUNCTIONS was introduced to Oak leaf in Spring 1972, it was expected to

undergo rapid changes as students reacted to the unusual style of the

instruction. The teaching sequences could also require modification if

students did not find the steps between puzzles small and manageable.

Extensive feedback to the researchers was built into the program

to help make in5ti.uctional design decisions. In addition, adult super-

vision and observation procedures were used. Finally, aU students com-

pleting MATH FUNCTIONS were required to take the normal, paper and

pencil, curriculum embedded test CCE*1) as a transfer test after c m-

pleting an objective on MATH FUNCTIONS. This section describes the

special procedures introduced to help modify the program as students

learned from it.

Procedures internal to the program recorded every student inter-

action, including the precise inputs he made, the test items he responded
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to and his answers. The data collected were sufficient to reproduce the
entire interaction on paper so that we could examine it in detail in the
laboratory. These interactions were printed every day, and two of us
examined them and made changes to teaching sequences we deemed nec-
essary.

Additional procedures recorded summaries of the interaction
with each student, including the sequence of puzzles he saw and the result
of his work on each puzzle. This told us if the students were passing the
instructional puzzles without recourse to the remedial puzzles, whether
the remedial puzzles helped the students, and whether post-criterion
puzzles were passed. This information often led to revision of tealiing
sequences.

In Spring 1972, a school aide watched every student using the
program and reported the observations to us. When students found dif-
ficulty with the program, the aide helped and reported her interaction to
us. On most clays an observer from the research staff also watched the
interaction. Together, the report of the school aide and the research
staff observer provided further information to help us clarify the teaching
sequences.

Finally, the curriculum embedded tests were administered as a
transfer test from the instruction. Implicit, guided discovery teaching,
such as the MATH FUNCTIONS program provided, should encourage
transfer to paper and pencil form of the same skill and of closely relairt.
skills. We expected a high success rate on the curriculum embedded
tests, and would modify teaching sequences whenever students failed to
transfer their learning to the CET. The specific errors students made on

the CET's suggested additional puzzles for the teaching sequences.

In Spring 1972, when MATH FUNCTIONS first entered the school,
only 22 objectives were used. Because there were so few objectives
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available, and because we wanted to gain experience with the program
quickly, we encouraged teachers and students to select MATH FUNCTIONS

as their prescription whenever the objective was available. Teachers

were highly cooperative in this initial tryout, notwithstanding the unusual
procedures associated with it.

In Summer 1972, 100 additional teaching sequences were pre-
pared, and the MATH FUNCTIONS program itself had several improve-
ments made in the way it judged success or failure on a puzzle and on
individual test items. In Fall 1972, a full scale tryout began. No school
aide was required for supervision, but a research staff observer was
frequently at the school. Teaching sequences were modified throughout

the year whenever the need became apparent.

During Summer 1973, further modifications of teaching sequences

took place, some of the less successful sequences were withdrawn from
L e school. In Fall 1973, the program was reintroduced at Oakleaf, and
now runs without special supervisory procedures of any sort. The next

section describes the results attained from using the program during
14 months in the school.

III. The Results

rhis section examines the success of MATH FUNCTIONS in

teaching mathematics content. It focuses on results within the program
defined criterion performance and on the transfer task, the paper and
pencil, curriculum embedded test (CET). Some descriptive statistics on
amount of usage are also reported.

A. Outcome Statistics

The basic datum of this section is an outcome on a single objective

for a single student, for example, student number 3333 working on the
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addition of fractions objective mastered the criterion puzzle and passed
the CET. The same student will be involved in several data; the same
objective will be involved in several data. No attempt is made here to
isolate the effects due to individual students or to individual objectives.

One of two outcomes occurs each time a student works on an
objective in MATH FUNCTIONS: The student masters the criterion puz-
zle (mastery); or the student does not master the criterion puzzle (non-
mastery). A further refinement of the outcomes occurs for students who
take the curriculum embedded test (CET) as a transfer task: the student
passes the CET (mastery-pass); or the student fails the CET (mastery-
fail).

The frequency of the various outeemes is reported in Table 3.
For the moment, only the overall totals are relevant. Of the total sample
of 601 outcomes since Spring 1972, 529 (88.0 percent) were masteries.

TABLE 3

Outcomes on Objectives

Non-Mastery Mastery
Mastery

Fail

41MINIIMM,
Mastery

Pass .........
Overall 72 (12.0%) 529 (88.0%) 102 (21.1%) 381 (78.9%)

Spring 1911 9 (8.3%) 99 (91.7%) 23'35.0%) 69 (75.0%)

Fan 1972 15 (14.7%) 87 (85.3%) 23 (33.7%) 59 (66.3%)

Winter & Spring 1973 42 (13.1%) 279 (88.9%) 56 (18.4%) 197 (81.1%)

Fall 1973 6 (8.6%) 64 (91.4%) 6 (9.7%) 56 (90.3%)

Grades 3 and 4 16 (5.4%) 243 (94.6%) 14 (6.2%) 213 (93.8%)

Grades 5 and 6 47 (20.1%) 187 (79.9%) 65 (39.6%) 99 (90.496)

54



BEST COPY AVAILABLE

Some students (46) who mastered tho objective did not take the CET

transfer test. Of those who did take the test, 381 of 483 (78.9 percent)
passed it, indicating a high transfer rate from the program defined cri-
terion task to the paper and pencil task.

Students using the paper and pencil teaching sequence pass the
CET on the first attempt 85 to 95 percent of the time. The slightly
lower passing rate for FUNCTIONS (79 vs. 90 percent) is explained by
the fact that FUNCTIONS students took the CET in a mode (paper and

pencil) different from their instruction (computer).

Since the MATH FUNCTIONS program changed during the period

of this evaluation, a partition of the results across time should reveal if
changes affected the outcomes. Four natural divisions occur; Spring
1972 with only 20 objectives in a highly supervised setting; Fall 1972

with 120 objectives in a moderately supervised setting; Winter and Spring
1973 with 108 objectives in a lightly supervised setting; and Fall 1973

with 90 objectives in a lightly supervised setting. Outcomes for these
periods are reported separately in Table 3. A Chi Square test of
association of nonmastery vs. mastery with time is not significant,
making the best estimate of the pass rate 88.0 percent, the overall rate.
The transfer rate does change over time (x2 = 15.9, 3 d. f. , p < .05).

The only drop in transfer rate occurs between Spring 1972 and

Fall 1972 when six times the number of teaching sequences were avai-
able, and the amount of program supervisit.n decreased. Notice a paral-

lel drop in the mastery rate at the same time period. The mastery-pass

rate in Fall 1973 is significantly greater than all other time periods
(x2 = 5,6, 1 d, f. , p < . 05), and is best estimated at 90, 3 percent. The

higher transfer rate results from revision of teaching sequences and
selective elimination of objectives with high mastery-fail rates.
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A second way to partition the data is by grade level. Student
outcomes from grades 3 and 4 are contrasted with outcomes in grades
5 and 6 in Table 3. There is a highly significant relationship (x2 = 21.3,
1 d.f. , p < .05) between the respective mastery rates, favoring the

younger students with 94.6 percent mastery over the older students with
79.9 percent mastery, A further difference occurs on the transfer task.
Students in grades 3 and 4 have much higher transfer rates than students
in grades 5 and 6 (X2 = 66.1, 1 d.f. , p < . 05). For the younger grades
93.8 percent of the students transfer; for the older grades only 60.4 per-
cent transfer.

Many factors are confounded with grade level, so these results
must be interpreted cautiously. Several of the factors are described
below. First, the younger students cover simpler rules with less com-
plex domains, These simpler rules may be easier to teach using MATH
FUNCTIONS than the more complex rules higher in the Individualized

Mathematics curriculum. Second, the younger students needed to have
perfect CET's before advancing to a new objective, in contrast to 85 per-
cent for students in the older grades. Vitale this fact makes the trans-
fer of 93.8 percent even more remarkable, tne importance may lie in
effect on prerequisite skills. Mastery of prerequisites may be better
assured with the higher criterion for advancement. Third, the younger
students have used special curricula designed by Learning Research
and Development Center since they began School; the older students
have used fewer of the special curricula. The better performance on
MATH FUNCTIONS may reflect this special training (Rosner, 1973).

56



BEST COPY AVAILABLE

B. Usage Statistics

This section exanlines two measures of program usage: the
number of objectives learned for each student, and the mean time to com-
plete an objective.

The number of objectives seen by each student is important for
two reasons: first, it gives an indication of how interested students are
in learning by solving problems and second, it measures how much
exposure each student has had to help him learn problem solving skills.
One hundred seventy-six students were eligible to work on MATH FUNC-
TIONS during the 1972 -73 school year. One hundred forty-nine or 84.7
percent used the program for at least one objective. The mean number
of objectives seen was 3.05, with some students seeing as many as 13
objectives. Th'a amount of usage indicates that students do return
several times to the program. A frequency dibtribution of number of
objectives seen by number of students is contained in Figure 16.

It is difficult to determine what fraction of available objectives
students chose to work under MATH FUNCTIONS, since students vary

enormously in how much they study and precisely what objectives they
study. On the average, we estimate that students worked 60 objectives
in the school year 1972-73. and pretested out of 40 percent of them, taking
instruction in 36 objectives. One-fourth of those, or nine objectives, was
available under MATH FUNCTIONS. On the average then, students took

one-third of the objectives which were available to them under MATH
FUNCTIONS. These figures are rough estimates, but they do give an
idea of usage frequency.

The time to complete objectives is important since teachers and
students expect to complete objectives in one or two class periods. If

the MATH FUNCTIONS program took much longer to teach, it would not
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Figure 16. Frequency of students seeing each number of objectives in a year.
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be acceptable. The actual data indicate that speed is satisfactory, espe-
cially during Fall 1973 when a revised and faster version of MATH FUNC-

TIONS was introduced. The mean time to complete an objective with the

old version of the program was 56 minutes, or just over one class period.
With the revised program, the average time is 30.0 minutes, less than
one class period. We estimate that the average time using the standare
teaching sequence is approximately 60 minutes. Even though the MATH
FUNCTIONS program teaches problem solving in addition to mathematics

content, it takes no longer to teach the content.

IV. Surimary and Implications

The results reported in the last section demonstrate that mathe-
matics content can be taught in an environment which encourages problem

solving. This section summarizes the procedure and the conclusions and

points out directions fur further work.

A. Summary

The i'UNCTIONS program was designed as a problem solving

environment. Features were included to teach skills such as stating the
problem. gathering data, organizing data, using feedback, subdividing the
problem, integrating subsolutior.s, and knowing when you are finished.
Important features include the organi?.ed display, the two modes (input

and test) of interaction, and the lack of compulsion in the program.

Since mathematics contains many examples of functions, much of
elementary school mathematics can be taught using the FUNCTIONS pro-

gram. Special features of the Individualized Mathematics system such as
self-paced learning, clear behavioral objectives and prerequisites, and
mastery criteria make it especially adaptable to computerized, individual

instruction.
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One hundred objective3 of the Individualized Mathematics system
were analyzed, and teaching sequences were prepared for use with the
MATH FUNCTIONS program. Each teaching sequence consists of an
ordered set of puzzles each of which is slightly more complex than its
predecessc,r.

The MATH FUNCTIONS program was easily integrated into
normal operating procedures at the Oak leaf Public School: Oal:leaf
lready had a computer system which the students used regularly and the
management procedures of the Individualized Mathematics system easily
included new options for teaching objectives.

In over one year of continuous use, students have mastered 88.0
percent of the objectives they study, and have transferred their knowledge
to a paper and pencil test 78.9 percent of the time. Improvements in the
program and teaching sequence have increased the transfer rate to 90. 3
percent during the current semester.

Most students (84 percent) have tried the program, and have
taken an average of 3.05 objectives. This indicates that many of the stu-
dents learn from Cie program. The time to learn is no longer than more
traditional methods require.

13. Implications

While the overall success of the program in teaching mathemat'cs
content has been demonstrated, much work remains to be done. In this
section, some additional lines of investigation are developed. These
include: determining if student aptitudes interact with the treatment;
developing a model of ideal problem solving in the program and demon-
strating that students approach the ideal with experience; clarifying the
methodology for creating teaching sequences; and, finally, developing
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additional programs of a similar nature to broaden the scope of application.
The following paragraphs develop these ideas.

It seems likely that students with different entering abilities per-
form differently in MATH FUNCTIONS, both with respect to outcome and
transfer and wish respect to problem solving. Once such effects are
identified, an effort will be made to determine how the specific aptitudes
and abilities affect performance. Possibly, special training procedures
can be developed to overcome certain handicaps.

The FUNCTIONS program was designed to encourage certain
problem solving skills by its structure. The ideal student will respond to
the environment to make his problem solving more efficient. One exten-
sion of this work is to develop a model of ideal student behavior and to
identify students who exhibit that behavior. The program should shape
student behavior toward the ideal; detailed protocol analysis of students
at work will be undertaken to identify the specific events which produce
behavior changes in the desired direction. When such events are found,
contingencies can be built into the program to make especially fruitful
events more likely to occur. Analysis such as this will lead to a more
powerful procedure for teaching problem solving.

While the methodology for doing the task analysis and creating a

teaching sequence follows accepted instructional principles, it remains
an art rather than a science. One effort that seems promising is an
attempt to further clarify how functions are made slightly more complex
in teaching sequences. Formative evaluation %v.:irk has created a collec-

tion of teaching sequences which work and a smaller collection of sequences
which are too complex. Analysis of these collections should clarify the
differences, and make it possible to state rules more precisely.
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The success of this one effort at combining the teaching of pro-
blem solving with the teaching of mathematics content suggests that other
similar efforts should be undertaken. What kinds of programs can be
adapted to these uses? What other fundamental ideas occuring in mathe-
matics can be exploited as functions have been in MATH FUNCTIONS?
Additional work in this area will attempt to answer these and other
important questions.
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